Efficient and scalable bit-matrix multiplication
in bit-slice format

Duco van Amstel
ENS Lyon - Département d’Informatique
15 parvis René Descartes
Lyon 69007, France

duco.van.amstel@ens-lyon.org

ABSTRACT

The bit-matrix multiplication (BMM) has until now only
been implemented on the Cray supercomputers. Since then
multiple publications have proved the usefulness of this in-
struction in symmetric-key cryptography, linear cryptanal-
ysis and bio-informatics. In the same time the interest for
parallel computing has spread to the field of commodity pro-
cessors and the growth of multimedia extensions has brought
the bit-slice data format under attention of many researchers
and programmers. The associated Single Instruction Mul-
tiple Data programming has proven useful in the efficient
implementation of parallel algorithms. However the combi-
nation of the BMM instruction with a bit-slice data format
remains a challenge on these commodity processors. This
investigation shows that general-purpose architectures can
also benefit from the advantages of the BMM instruction
that were previously only accessible to supercomputers. The
proposed method requires some additional hardware support
and can be adapted to all matrix-sizes as well as a vari-
able number of parallel bit-slice streams. The investigation
analyzes the performances achieved on the AES algorithm.
Furthermore implementation details are presented including
assembler optimizations and run-time code specialization.

Categories and Subject Descriptors

B.2.4 [Arithmetic and logic structures]: High-speed arith-

metic; E.1.m [Data structures|: Miscellaneous
; D.1.m [Programming techniques|: Miscellaneous

General Terms

Performance, Algorithms

Keywords

Bit-slicing, Bit-Matrix Multiply, Bit-Wise Logic,
Advanced Encryption Standard, Hybrid Specialization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SAC 2012 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION

A bit-matrix multiply (BMM) instruction is similar to a
numerical matrix multiplication while replacing numerical
multiplications by bit-wise AND operations and each numer-
ical addition by a bit-wise XOR. The first and only processor
architectures to thrust this instruction were the Cray super-
computers [5]. This instruction is used in multiple fields
including symmetric-key cryptography, linear cryptanalysis
[10] and bio-informatics [13]. More recently a paper by Hile-
witz, Lauradoux and Lee [11] emphasized again the useful-
ness of such an operation. However the hardware synthesis
of this facility can be costly. The main reason is that a BMM
requires bit-level precision whereas the vast majority of ar-
chitectures only support byte-level precision [11]. This limits
the optimization possibilities for software implementations
of BMMs. These software implementations are typical ex-
amples of programs where there is need to apply operations
to partial data. In other words it uses a processor instruc-
tion for only a small part of the operands [2].

At some occasions the lost computing power is even greater
as the operation requires to reorganize the data in a different
way. An example of this is would be a shift of bits before
applying a XOR to a single byte. This contradicts the 32
or 64-bit data-path of most modern processors. As a conse-
quence this can result in an overhead of up to 7 bytes out
of 8 of the computational power of the XOR instruction in
the case of a non-optimized implementation on a 64-bit pro-
cessor. The bit-slice data format makes it possible to limit
the loss in computational power by lower-than-optimal use
of the data-path width. However this data format does not
diminish the need for a high number of instructions due to
the many XOR operations involved in a BMM as well as
the necessity to perform partial bit-wise operations on the
bit-matrix by which the data is multiplied.

The contributions of this investigation are as follows :

e It shows that hardware support for a BMM instruc-
tion of a size superior to 8 x 8 is very costly in space
whereas modern commodity processors have a 32 or
64-bit data-path

e It proposes a fast BMM of bit-sliced data by a given
matrix that exploits a bit-wise logic unit (BWLU) as
is presented in [9].

e It presents an use of hybrid specialization to accom-
modate for each use-case as the proposed method for
BMNMs varies with the bit-matrix.

12 32

32

l |

[132-bitword ---variable limits

Figure 1: Data reorganisation in bit-slice format

The remaining part of the paper is organized as follows.
The bit-slice data format that improves the usage of existing
processor instructions is presented in the first section. In the
next section potential hardware supports for BMMs are eval-
uated for their cost in terms of circuitry size. Among them
the BWLU instruction then enables an efficient software im-
plementation for a BMM. An example with a bit-sliced ver-
sion of the Advanced Encryption Standard [14] will then
be presented along with the achieved performances based
on empirical results. The proposed method has parameters
specific to each use-case and thus the code must be dynam-
ically generated and an algorithm for this task is presented
in the last section.

2. BIT-SLICE DATA REPRESENTATION

In order to accelerate encryption and decryption with the
Data Encryption Standard (DES) algorithm Elie Biham [2]
introduced a new data representation. Bit-slice processing
exploits a single n-bit processor as n different 1-bit proces-
sors that can be used in a Single Instruction Multiple Data
(SIMD) fashion. We then speak of an n-bit bit-slice. Data
is reorganized so that the i-th n-bit word contains the i-th
bit of n different data blocks as in figure 1. Operating on
this data format can be as easy as using a n-bit XOR on
words k and [to obtain the 32 XOR results of bits k£ and [
of the 32 original data blocks.

This method takes advantage of all the computational
power of bit-wise instructions without a single unused re-
sult bit. Since its first introduction this technique has found
a large domain of application in cryptography as many ci-
phers are based upon linear and non-linear algebra as well as
a wide use of logical bit-wise operations. The more recent
Advanced Encryption Standard (AES) has been bit-sliced
in different ways for an equal number of different architec-
tures [3, 14].

Bit-slicing has certain limits as only bit-wise instructions
can be implemented effectively in this alternative data for-
mat. Operations such as adding, multiplying and modular
dividing are more complex in this format than in a stan-
dard representation. One of the remaining challenges for

programmers and for hardware designers is the efficient im-
plementation of non-bit-wise instructions in bit-slice data
format. An illustration of this may be found in [9] where
the authors evaluate the balance between hardware crypto-
graphic facilities and software implementations. A particu-
lar case of a complex operation that raises an issue is the
bit-matrix multiplication (BMM). Current implementations
range from optimized architecture-specific assembler code to
dedicated hardware instructions.

3. THE COST OF HARDWARE SUPPORT

In terms of performance the best implementation for a
BMM is a full hardware mapping. Nonetheless this choice
can result in prohibitive costs and because of that it is often
in software that the differences between the average BMM
and the high-speed versions appear. This investigation pro-
poses a trade-off between hardware and software by using a
BWLU as presented in [9] capable of efficiently computing
complex logical operations by means of a lookup table.

3.1 Costly Bit-Matrix Multiplications

In the linear algebra of the Galois Field of dimension 2%
GF(2*) the bit-matrix multiplication is a very frequently
used operation, specifically in cryptography. The Advanced
Encryption Standard (AES) algorithm for example uses mul-
tiplications of bit-vectors by bit-matrices at different stages
[1] and some optimized implementations use them to change
the mathematical base on which the data is represented [4,
14]. The importance of this particular operation is under-
lined in [11] together with the study of a hardware mapping
of bit-matrix-matrix multiplications as well as bit-matrix-
vector multiplications.

For an n-bit bit-slice to be processed by a hardware unit
this unit should accept a matrix size with at least n columns
as each column represents a bit-slice stream. However such a
mapping would have a high cost in circuitry. Hardware syn-
thesis with a Virtual Hardware Description Language has
been done on different sizes. Table 1 illustrates the growth
in circuitry size. For example the switch from 8x8 to 16x16
matrices multiplies the processed data by 4 whereas the nec-
essary circuitry increases by a factor 8. This cost will only
grow with the size of the supported bit-matrices. Even a
32x8 unit multiplies the required circuitry by 4. Further-
more a unit of greater size needs an equivalently increased
data-feed which in his turn impacts on the required circuitry.

This altogether advocates for a restriction of hardware
BMMs to sizes of at most 8 x8 bit-matrices on most modern
parallel processors as is recommended in [11]. On the other
hand the 32 to 64-bit nature of these processors encourages
the use of a 32 or 64-bit bit-slice. This causes an incom-
patibility with the size of the BMM hardware instructions.
The solution proposed in section 4.1 exploits the power of a
BWLU to take full advantage of the bit-slice data format.

Matrix size | Gates Area
8x8 850 758 pm
16x16 | 6656 | 6023 pm

Table 1: Circuit cost with standard 28nm cells

3.2 Bit-wise logic

3.2.1 Standard architectures

A significant part of linear algebra in GF(2¥) and crypto-
graphic algorithms is the usage of logical operations on data
in a bit-wise manner. The bit-slice data format has the ad-
vantage of reducing or eliminating computational overhead
induced by shift operations on standard data formats. When
operating in bit-slice a shift is equivalent to an offset in the
memory array representing the data. To illustrate the effi-
ciency of bit-slicing the following example can be taken on
32-bit variables in C :

x = (<< 1 (y>>15)) & ((z<<5B) | (z>>27)); (1)

In x86 assembler the fastest way, excluding contextual opti-
mizations, to implement (1) would be :

movl %eax $1
movl %edb $2
roll Yeax 17
roll %edx 5
andl Jjeax %edx
movl $3 %eax

For a total of 32 x86 DWORDS! one should take into ac-
count that the latest x86 chips (x86-64) provide sufficient
resources to operate upto 3 arithmetical instructions, a load
and a store during a single clock-cycle. This gives a theo-
retical clock time of 128 cycles to process all 32 variable sets.

When taking a 32-bit bit-slice data is represented as ar-
rays where the i-th element represent the 32 i-th bits of all
variables. Then the C code becomes :

for (i = 0; i < 32; i++) {
x[i] = y[(i+17)&0x1£] & z[(i+5)&0x1£];
}

The assembler code for a bit-sliced version of (1) rends a the-
oretical clock time here is 100 cycles because of branch pre-
diction. The performance gain is thus approximately 22%.

Going a step further a more complex logical function using
more than two operands could be studied. For example :

x = (k>>2) ~ (A<<T)) &
((A>>9"m) | (1°n)); (2)

Bit-slicing the whole operation would again turn out a per-
formance gain because of the absence of rotate operations.

3.2.2 Using a Bit-Wise Logic Unit

An alternative option would be to use a hard-wired bit-wise
logical operation as proposed in [9]. Such a hardware in-
struction is capable of taking several operands and returning
the result of a complex logical operation applied to the in-
put in a bit-wise fashion. This is done by means of a lookup
table that is also given as operand to the BWLU. The result
of the operation is calculated by taking the operand bits as
an index value for the lookup. This lookup table can be
interpreted as the truth-table of the logical function that is
simulated. A diagram of this functioning can be found in
figure 2. Another advantage is the circuitry size as a 4-way

1 An x86 DWORD is 32-bit long

BWLU can be synthesized with 160 gates on a 370 pum sur-
face®. From the programmers point of view the assembler
code using a BWLU is significantly shorter.

From here on and for the rest of this report the low-endian
notation is supposed for the given examples and the consid-
ered architectures are supposed to be low-endian as well.
Assume a processor with a BWLU as in figure 2 counting at
least two 64-bit registers named r1, r2 that can be addressed
as four 32-bit registers ril, rih, r21, r2h. The assembler
code for 2 would resemble :

load r1l = 0[$1]

load rih = 0[$2]

load r2l1 = 0[$3]

load r2h = 0[$4]

bwlu ri1l = r1, r2, 0x0770
store 0[$0] = ril

Thus 6 instructions are sufficient for a parallel computing of
a single bit for each of the 32 input streams. If the proces-
sor supports 64-bit loads and the variables are appropriately
stored in memory this can be reduced to four instructions.
Even further, if parallel loads and stores are available a con-
tinuous throughput of 32 bits every three clock cycles can
be sustained. As a result this BWLU can apply an arbitrary
logical function to 32 streams of four 32-bit variables in less
than 100 clock cycles. This is equivalent to an efficiency of
at least 1 byte per cycle.

More specifically in the case of a BMM a BWLU can be
used as a 4-way XOR operation. Because the XOR instruc-
tion makes up for the largest part of a traditional bit-sliced
BMM a significant speed-up can be expected. To support
this claim a detailed example of code and performance eval-
uation will be presented in sections 4.2 and 5 of this report.

3.3 Scalability

This method of implementing a BMM involving a BWLU
as a multi-issue XOR does not limit the size of the data-path
to which it can be applied. The code that has been presented
can be adapted to whatever the size of the data-path of
the BWLU. Furthermore it would be possible to enlarge the
number of operands enabling lookup tables greater than the
presented 4-to-1 format. For bit-slice widths that are larger
than the data-path of the BWLU the bit-sliced variables
can be processed in multiple passes, hence the scalability.

2Using the same 28nm cells technology

ABCD Index i
Ao Bo{Co D, A |Bi| G D
A,HB,HC,| D
1 1 1 1 LU[J LU1 " LU, - I-U15
H o H H l
A31~B31*C31*D31 LUindexi

Figure 2: Functional diagram of a 4-way BWLU unit
with A, B, C & D as operands and LU a 16-bit
lookup table

Another advantage of the BWLU is that such scalability
does not imply overhead as the code only depends on the
size of the instruction data-path width and not on the bit-
slice data-path width.

4. CASE STUDY : BASIS-CHANGE IN THE
ADVANCED ENCRYPTION STANDARD

The Advanced Encryption Standard (AES) as defined by
the National Institute of Standards and Technology (NIST)
in 2001 [1] has been implemented in various ways exploiting
a wide range of programming techniques and mathematical
interpretations [3]. The bit-slice data representation is one
of the techniques that has been used to implement the AES.
The implementation of Rebeiro, Selvakumar and Devi in [14]
is particularly interesting for their combination of multiple
steps of the algorithm into single computational stages. A
particular stage of their version of the algorithm involves an
algebraic basis-change at byte-level of the data that is being
processed. This is equivalent to a BMM by a fixed matrix
that is known at the time of compilation. The performed
shortcut is represented on figure 3.

4.1 Typical code

From a mathematical point of view the basis-change con-
sists in multiplying each byte b by a matrix X to obtain
byte b’ = X - b. This operation is applied to all bytes of the
data. It should be noted that only the positive bit values
in the matrix need to result in a XOR operation. In order
to operate as a 4-issue XOR the BWLU instruction uses the
hexadecimal constant 0x6996 as it is the truth-table of this
function. Some XOR operations can be grouped among the
lines of the matrix to compute intermediate values. Here we
will use the following matrix as an example :

11100111
01110001
01100011
11100001

X=110011011
0 000O0GO0TU 01
01100001
01 001111

In the case of this particular matrix the 32 initial XOR op-
erations are reduced to 8 BWLU instructions. This results
in a very compact code.

The drawback of this method is that it has to be recoded
for every matrix with variable costs but the maximum num-
ber of XOR operations that are required is limited to 64
and thus, while neglecting register copy costs, gives a rough
maximum cost of 64/4 = 16 BWLU instructions.

4.2 Achieved performances

For experimentation and measure purposes the previously
presented software BMM has been implemented on a general
purpose Very Large Instruction Word® (VLIW) processor [7,
8] with 32 and 64-bit capabilities. The functional core is de-
rived from the Lx Processor Family [6, 16]. This architecture
implements a double 4-way BWLU that applies two lookup
tables simultaneously to four 16 or 32-bit operands with a

3VLIW processors implement instruction parallelism by per-
forming a bundle of instructions per clock-cycle

| Data at start of S-Box |

| Data at end of S-Box |

Figure 3: Schematics of the AES S-Box using com-
posite field algebra. The dotted lines represent steps
in a bit-sliced implementation.

one clock cycle latency. Such a feature enables the possi-
bility to execute any pair of 2, 3 or 4-issue XOR on four
fixed operands. Another feature is an operand bypass mak-
ing it possible to feed the result of an instruction directly
as operand to an instruction of the next cycle. The VLIW
bundles on this architecture can each accommodate up to:

e 1 Branch/Condition instruction
e 2 Arithmetical/Logical instructions
e 1 Load/Store instruction

Furthermore the Branch/Condition and Load/Store units
can perform a subset of the Arithmetic/Logical instructions
for their normal functioning. The assembler language for
this architecture delimits each instruction bundle by a dou-
ble semi-colon.

Using this architecture the total cost of the optimized code
is 10 instruction bundles to process a byte of all 32 bit-slice
streams. This count includes the load and store instructions
necessary to access the data from memory. Due to cache
misses this accounts for a period variable between 13 and 35
clock cycles. These measures were obtained by direct simu-
lation of the architecture by means of hardware description
languages.

4.3 Comparing to SSE extensions

The bit-sliced version of AES presented in [14] has been
benchmarked on different representatives of the x86 archi-
tecture. To increase the performances the authors have ef-
ficiently exploited the SIMD capabilities of these processors

Architecture (data-path width) | Cycles/encryption
Pentium 4 (128-bit) 334
Athlon 64 (128-bit) 210
Core 2 (128-bit) 102
VLIW (32-bit) 168
VLIW (128-bit) (estimated) 117

Table 2: Cycles spent on the S-Box per block per
encryption

due to their Streaming SIMD Extensions (SSE) [15]. These
extensions allow to process data of a size up to 128 bits in a
SIMD fashion. The results presented in their paper indicate
that the S-Box operations in an AES-256 encryption take
75% of the processing time. Table 2 summarizes the num-
ber of cycles per encryption that are spent on the S-box on
different architectures including the one used in this inves-
tigation as well as the ones in [14].

The higher value on the VLIW architecture can be ex-
plained by the data-path that is 4 times smaller. These
figures should be compared while keeping in mind the dif-
ference in data-path width. Moreover the SIMD structure of
the SSE is less flexible than the Multiple Instructions Mul-
tiple Data (MIMD) structure of a VLIW architecture.

S. DYNAMIC CODE GENERATION

The remaining part of this investigation supposes the use
of the previously described VLIW architecture. There are
architectural constraints on the number of simultaneous reg-
ister file read operations. This means that the lookup tables
for the BWLU instruction have to be given as immediate val-
ues and should thus be known at compile-time. This could
be a problem due to the specificity of the lookup tables to
the bit-matrix by which the data is multiplied. To enable
a general use of the proposed implementation of BMMs the
proposed solution has been sought in the domain of Just-In-
Time compilation.

5.1 Fixed versus variable code structure

In a search for an optimal solution regarding the number
of required instruction bundles one of the necessities would
be to find common sub-vectors to the bytes of the bit-matrix
by which will be multiplied. This would allow to regroup a
maximum of the XOR instructions within the same BWLU
instruction. Such a search can be computationally heavy
and the resulting variable code structure would complicate
the code generation process as more parameters are intro-
duced. An alternative non-optimal solution would be to have
a fixed code template that can accommodate for all possible
bit-matrices with a minimal number of parameters account-
ing for the unique structure of each matrix.

The size of the generated code for an 8x8 BMM on a
32-bit bit-slice can be evaluated for both the optimal and
the non-optimal solutions on the previously presented archi-
tecture. The 32-bit words that should be multiplied by our
fixed bit-matrix can be loaded by 64-bit loads and the result
can be stored in a similar manner. This alone accounts for
8 instruction bundles. Supposedly a minimalist bit-matrix
will only involve a single BWLU instruction. Thus the mini-
mum of 9 instruction bundles will be required. On the other
hand a general purpose template can be coded within 14
bundles by means of pipe-lining an example of which will be
shown in the next part of this report.

Moreover it should be considered unlikely for bit-matrices
to generate a minimum number of BWLU instructions ex-
cept for sparse matrices. Empirical examples such as pre-
sented in section 4 advocate for an average of 8 BWLU in-
structions which leads to 12 instruction bundles. This means
that there would be a 2 bundle-per-byte gain between the
optimal and the non-optimal solution. The ability to absorb

load64 r1 = 0[r01] xor r1dh = r7h,r8h

HH bwlu r10 = r3,r4,1ull_1u9
load64 r2 = 8[r01] S

HH xor r1b51l = r91,r101

load64 r3 = 16[r01] bwlu ril = r1,r2,1uld_1lul?2
HH store64 8[r01] = ri4
load64 r4 = 24[r01] B

HE xor r1b5h = r9h,r10h

bwlu rb5 = r1,r2,1u2_l1ul bwlu ri12 = r3,r4,1lulb_1ul3
bwlu r7 = r1,r2,1u6_1u4d xor ri16l = ri11l,r121

HH xor r16h = rl1ih,r12h

bwlu r6 = r3,r4,1u3d_lul store64 16[r01] = ri5

xor r131l = r51,r61 add r01 = r01,32

xor r13h = r5h,r6h store64 24[r01] = ri6

bwlu r8 = r3,r4,1u7_lub HH
xor rl14l = r71,r81

bwlu r9 = r1,r2,1ul0_1u8
store64 0[r0l1l] = ri3

P

Table 3: ASM template for run-time code special-
ization on an 8x8 BMM

the additional overhead for the optimal generation thus de-
pends on the number of reuses of the generated code. How-
ever a full optimization can hardly be expected to take up
less than 1000 bundles which puts the break-even point be-
tween the two solutions at a minimum of 500 code reuses.

5.2 Code specialization

The principle of using a fixed code template where only
some variables or parameters are changed at run-time is an
example of what is called hybrid specialization [12], half-
way between static and dynamic compilation. To extract a
code template that is common to all possible bit-matrices
we divide each matrix in 16 nibbles*. Each nibble can be
interpreted in two ways:

1. The i-th bit indicates the use or not of an additional
XOR in the computation of the BMM.

2. The value of the nibble is an index into a table of
lookup constants for a BWLU that represent all pos-
sible XOR groupings on the four variables.

On the VLIW architecture that is used for testing a fixed
code template would look as is shown in table 3. All regis-
ters are 64-bits wide with upper and lower-half addressable
parts. The bwlu instruction computes two lookup tables on
the given variables. The 16 nibbles of the fixed bit-matrix
are mapped to the 16 lookup tables that are used in the code
template as 1u0, lul, ..., 1ul5 by means of an array. The
presented code performs in fact a bit-matrix-vector multipli-
cation as only a single byte of each bit-slice stream is com-
puted. By encapsulating this code in an instruction loop
one can obtain the desired bit-matrix-matrix multiplication
on as many bytes as necessary.

In case one would like to implement a BMM of a differ-
ent size the code template can be expanded. A 16x16 BMM

4A nibble is a 4-bit unit

can for example be seen as 4 seperate 8x8 BMMs with some
additional XOR operations to link the different results to-
gether.

5.3 Specialization cost

To generate the specialized code from the template for an
8x8 BMM it is necessary to load the 16 possible lookup ta-
bles. Then the ones to use should be selected based on the
nibbles of the bit-matrix before integrating them into the
binary code. The cost of this has been evaluated at 54 bun-
dles including the loading of the bit-matrix and the writing
of the specialized code to memory. Considering the speed-up
that is gained over a traditional BMM by the usage of the
BWLU the cost of code-specialization is absorbed within a
single code run. This confirms the earlier statement that the
hybrid specialization method is of great efficiency for a low
to intermediate number of code reuses. For a high number
of code reuses the generation of an optimal code may render
even better performances.

The hypothesis that the lookup tables for the BWLU in-
struction may be kept in registers does not eliminate the
usefullness of this method. The only consequence would be
that the lookup tables are not written to memory as immedi-
ate values but are kept in registers instead. This eliminates
the initial overhead of the specialization cost.

6. CONCLUSION & FUTURE WORK

This investigation draws a picture of the methods cur-
rently used for bit-matrix multiplications and proposes a
new way of implementing them in software with limited
hardware support. Assuming that the data is stored in the
bit-slice parallel format it is possible to make use of a spe-
cialized instruction, the Bit-Wise Logic Unit, to efficiently
compute a Bit-Matrix Multiplication with a matrix that is
known at compiling time. Empirical results have been ob-
tained to support this claim and a case-study has been made
to demonstrate the use of the method. This altogether would
be an argument in favor of future platforms thrusting such
a hardware facility in their instruction set.

Another result is the effective use of dynamic code gener-
ation. To overcome the cost of coding a new version of the
proposed algorithm for each particular bit-matrix it is pos-
sible to use hybrid specialization to adapt the binary code
to specific bit-matrices with minimal overhead. The code
that is obtained is fully scalable and can be adapted to var-
ious bit-slice formats and bit-matrix sizes without effort nor
computational overhead.

Future improvements would involve an algorithm for the
generation of optimal code as well as the possibility to feed
the lookup table as register content to the BWLU instruction
instead of using immediate values. Moreover this investiga-
tion does not analyze the performance of other optimizations
on logical operations due to lookup-table use.

7. REFERENCES

[1] Specification for the advanced encryption standard
(aes). Federal Information Processing Standards
Publication 197, 2001.

[2] E. Biham. A fast new des implementation in software.
Technical Report CS0891, Technion, 1997.

[3] J. W. Bos, D. A. Osvik, , and D. Stefan. Fast
implementations of aes on various platforms.
Cryptology ePrint Archive, Report 2009/501, 2009.

[4] D. Canright. A very compact rijndael s-box. Technical
report, Naval Postgraduate School, California, 2005.

[5] Cray. Cray Assembly Language (CAL) for Cray X1
Systems Reference Manual, version 1.2. Cray Inc.,
2003.

[6] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and
F. Homewood. Lx: a technology platform for
customizable vliw embedded processing. In
Proceedings of the 27th annual international
symposium on Computer architecture, ISCA ’00, pages
203-213, New York, NY, USA, 2000. ACM.

[7] J. Fisher, P. Faraboschi, and C. Young. Embedded
computing: a VLIW approach to architecture,
compilers and tools. Morgan Kaufmann, 2005.

[8] J. A. Fisher. Very long instruction word architectures
and the eli-512. In Proceedings of the 10th annual
international symposium on Computer architecture,
ISCA ’83, pages 140-150, New York, NY, USA, 1983.
ACM.

[9] P. Grabher, J. Grofischidl, and D. Page. Light-weight
instruction set extensions for bit-sliced cryptography.
In Cryptographic Hardware and Embedded Systems -
CHES 2008, pages 331-345. Springer Verlag LNCS
5154, August 2008.

[10] Y. Hilewitz. Advanced Bit Manipulation Instructions:
Architecture, Implementation and Applications. Phd
thesis, Princeton University, 2008.

[11] Y. Hilewitz, C. Lauradoux, and R. B. Lee. Bit matrix
multiplication in commodity processors. In
Application-specific Systems, Architectures and
Processors - ASAP 2008, July 2008.

[12] M. A. Khan, H. P. Charles, and D. Barthou. An
effective automated approach to specialization of code.
In V. Adve, M. J. Garzardn, and P. Petersen, editors,
Languages and Compilers for Parallel Computing,
pages 308-322. Springer-Verlag, Berlin, Heidelberg,
2008.

[13] J. D. Maltby. The cray biolib: A high performance
library for bioinformatics applications. In 45th Cray
User Group Conference Proceedings. Cray Inc., 2003.

[14] C. Rebeiro, D. Selvakumar, and A. Devi. Bitslice
implementation of aes. In D. Pointcheval, Y. Mu, and
K. Chen, editors, Cryptology and Network Security,
volume 4301 of Lecture Notes in Computer Science,
pages 203-212. Springer-Verlag, Berlin, Heidelberg,
2006.

[15] S. T. Thakkar and T. Huff. Internet streaming simd
extensions. Computer, 32:26-34, December 1999.

[16] S. Wong, T. V. As, and G. Brown. p-vex: A
reconfigurable and extensible softcore vliw processor,
2009.

