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The Proverbial Memory Wall

Observations:

Available computational power keeps growing exponentially

Bandwidth of memory interfaces increases slower

Has been the case since the ’90s and is called the Memory-Wall

Definition
For a given executable / partial code :

Operational Intensity (OI) =
Number of instructions

Number of memory operations
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Research topics

Working hypothesis
Local target memory of limited size communicating with distant
memory of infinite size through memory operations

Idea: Improve data reuses and reduce IO operations of
frequently executed code
→ Improve data locality of programs
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Overview

Data locality

Compilation

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Manycore

Network-on-Chip
(Chapter 2)

Generalized tiling
(Chapter 3)

Directed graph
reachability Convex

partitioning

Register tiling
(Chapter 4)

Dataflow tiling
(Chapter 5)

Trace tiling
(Chapter 6)
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Code representation

What we want:

1 a compact representation

2 data reuses and no other
dependencies

3 straightforward evaluation of memory
usage for any part of the
representation

We refer to it as the memory-use graph.
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Figure: Dataflow diagram
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Memory-use graph construction

f o r ( i n t j = 1 ; j < N − 1 ; j ++ ) {
/* S1 */ A [ j ] = (A [ j −2] + A [ j −1 ] + A [ j ] + A [ j + 1 ] + A [ j + 2 ] ) / 5 ;
/* S2 */ B [ j ] = B [ j ] + A [ j ] * C [ j ] ;
/* S3 */ B [ j ] = B [ j ] − ( B [ j −1 ] − B [ j ] ) * C [ j − 1 ] ;

}
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Steps:
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Evaluation of memory usage
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Figure: Iterated memory-use graph

Consider a partial execution:

B1 � C1 � D1 � B2 � C2 � D2 �
B3 � C3 � D3

Compute the size of data stored in
memory in and between nodes:

3, 4, 10, . . . , 10, 12, 8, . . . , 12, 4, 4

The maximum is the memory usage
of the partial execution, i.e 12
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IO cost computation

For an arbitrary piece of code:

memory usage ≤ memory size

↓

Internal reuses do not require IO

Divide evaluated code in such pieces

Only external reuses generate IO

IO cost equal to cut between
pieces
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Performance
debugging

Memory usage
& IO model
(Chapter 1)
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(Chapter 3)
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Representing the iteration space
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f o r ( i n t i = 1 ; i < N ; i ++ )
f o r ( i n t j = 1 ; j < M; j ++ )

S1 : A [ i , j ] = B [ i ] + C [ j ] ;
S2 : A [ i , j −1] = A [ i , j −1] * A [ i , j ] ;
S3 : A [ i −1 , j ] = A [ i −1 , j ] * A [ i , j ] ;
S4 : A [ i , j ] = k * A [ i , j ] ;

LB (Loop-body) = {S1,S2,S3,S4}

Two new dimensions:

1 Statements / actors

2 Innermost iteration /
inputs
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Data locality optimizations

Code example:

f o r ( i n t i = 1 ; i < N ; i ++ )
f o r ( i n t j = 1 ; j < M; j ++ )

S1 : A [ i , j ] = B [ i ] + C [ j ] ;
S2 : A [ i , j −1] = A [ i , j −1] * A [ i , j ] ;
S3 : A [ i −1 , j ] = A [ i −1 , j ] * A [ i , j ] ;
S4 : A [ i , j ] = k * A [ i , j ] ;

Space representation
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A missing piece
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Comparison of tiling methods

Tile regularity
classical tiling
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Optimization problem

Defining a tiling solution means:

1 Linearization / schedule the memory-use graph

2 Choosing points in the schedule where to place tile limits

3 Specifying a width for each tile

. . . and there are multiple solutions
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Heavy-edge scheduling

Objective Reducing the reach of reuses
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Blue zones have been frozen
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Heuristical solver methods

Heavy-edge / Greedy
Perform heavy-edge scheduling and
greedily compute locally optimal tiles

Tile-aware / Heavy-edge
Contract edges one-by-one and create
or expand tiles to include them; Roll
back contraction if not possible

Tile-aware / Conservative
Contract edges one-by-one and create
tiles to include them; Roll back
contraction if not possible

Memory-use graph

Schedule

Tile

Tiling solution

DirectUndo
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Generalized register tiling

Code generation

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.
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tiling on load/store operations could be significant.
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Generalized register tiling

Code generation
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S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.
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Implementation

LLVM

General
optimizations

(-O3, etc.)

Unroll
loops

Memory-use graph
construction

Apply
tiling

Register
promotion
(-mem2reg)

Tiling solver

file.ll file.ll

Tiling driver

Existing passes Custom passes External tool

∼ 7k lines ∼ 2.5k lines
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Generalized dataflow tiling

Target
Static & cyclo-static dataflow languages

Prototyping was done in StreamIt:

Usage of preprocessed StreamIt benchmarks

Rescheduling of actors & execution scaling

Simulation of cache-behaviour / evaluation of cache-misses

Benchmark
StreamIt
toolchain

Memory-use

Tiling solver

Cache
simulator

schedule
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Prototype results
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4 Performance debugging with convex graph partitioning

Data locality

Compilation

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Manycore

Generalized tiling
(Chapter 3)

Convex
partitioning

Register tiling
(Chapter 4)

Dataflow tiling
(Chapter 5)

Trace tiling
(Chapter 6)
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Overview

Performance debugging
Analysis of the execution of code in order to identify performance
bottle-necks

Source code

Instrumentation
(DDG)

Executable

Trace graph

Performance
debugger

Optimization
hints
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Convex partitioning

S1

S2

S3
S4

S5 S6

2

5

4

2

4
3 3

. . . is a convex partitioning

Non-convex

1 2 3 4

Partition A

Partition B

Offending path: 1 (A) � 2 (B) � 3 (A)

Convex

1 2 3 4

Partition A

Partition B
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Partition schemes

k-way partition scheme

A B C D E F G

1 2 3

Hierarchical partition scheme

A B C D E F G

root

1 2

1.1 1.2 2.1 2.2 2.3

1.1.1 1.1.2 1.2.1 1.2.2
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Max-distance criterion

Idea: For each vertex compute longest
path originating at a source and
terminating at a sink

1 Source path ≤ Sink path
� source partition

2 Source path > Sink path
� sink partition

1
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4
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6 7
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Experimental results
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Conclusion & perspectives
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Overview

Data locality

Compilation

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Manycore

Network-on-Chip
(Chapter 2)

Generalized tiling
(Chapter 3)

Directed graph
reachability Convex

partitioning

Register tiling
(Chapter 4)

Dataflow tiling
(Chapter 5)

Trace tiling
(Chapter 6)
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Contributions

Operational intensity
Model to compute a close approximation of its value for arbitrary code

Generalized tiling
Formalization of an optimization problem and proposal of several
heuristics to compute solutions

GraphUtilities library
Multi-threaded library for directed graph manipulation:
state-of-the-art reachability queries, convex partitioning & associated
metrics (∼ 5k lines)
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Future work

Stabilize / rewrite LLVM implementation of generalized tiling

Pursue implementation of dataflow tiling

Expand generalized tiling formalization for more flexibility

Consider parallel execution of tiles

Continue improving hierarachical partition schemes

. . .
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Backup slides
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Generalized tiling in the polyhedral model?

Polyhedral model
j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

Memory-use graph
j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Theoretically possible but... more false reuse edges then true ones.
Very constrained optimization opportunities.
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Generalized tiling in the polyhedral model?

Polyhedral model
j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

Memory-use graph
j

st
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en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Need to create uniform reuse pattern for whole iteration space.
→ Duplicate all existing reuse edges for each point in iteration space?

Theoretically possible but... more false reuse edges then true ones.
Very constrained optimization opportunities.
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Generalized tiling in the polyhedral model?

Polyhedral model
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The influence of scheduling
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Figure: Iterated memory-use graph

What if we consider another
schedule?

B1 � B2 � B3 � C1 � C2 � C3 �
D1 � B3 � D3

Amount of data stored in and
between nodes changes. . .

7, 4, 11, . . . , 16, 14, 16, . . . , 6, 4, 4

. . . and so does the resulting
memory usage: 16
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Transition to Σ-C

Context
Dataflow languages on a manycore processor

Illustration with the MPPA processor family by Kalray:

256 computational cores, 32 management cores

16 computation clusters of 17 cores each

4 IO clusters of 4 cores each

Clusters each have own local memory

Clusters linked through a Network-on-Chip

Distributed architecture
→ Dataflow programs must be mapped to ressources
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Communications over the Network-on-Chip

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

IO IO IO IO

IO

IO

IO

IO

IO IO IO IO

IO

IO

IO

IO

Contributions:

Network traffic model

Redesign of bandwidth
limiter (patent filed)

NoC simulator
(∼ 1.5k lines)

Remaining challenges:

Map actors to clusters
with size constraints

Combine memory and
network models
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Reachability querying

Goal
For a directed-acyclic graph and two of its vertices decide whether
there exists a path from one to the other.

Existing approaches:

Naïve depth-first search (prohibitive for many queries)

Compute full transitive-closure (prohibitive for large graphs)

Pre-compute information reducing search time (many variants)

Contribution

1 Pre-indexation method based on reverse post-order traversals

2 Experimental results improving on state-of-the-art methods

Drawback: Index is very hard to maintain during graph partitioning
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Memory usage & IO cost

k-way partition scheme - Hypergraph cut, like tiling

Hierarchical partition scheme - FrontierLive = hypergraph cut

MemoryUse = max

(
max

children
(MemoryUse) , FrontierLive

)
M: MemoryUse F: FrontierLive

A B C D E F G

root

M: 2
F: 1

1

M: 2
F: 2 2

M: 1
F: 0

1.1

M: 1
F: 0 1.2

M: 1
F: 1 2.1

M: 1
F: 0 2.2M: 1

F: 0

2.3M: 1
F: 0

1.1.1 M: 1
F: 0

1.1.2 M: 1
F: 0

1.2.1 M: 1
F: 0

1.2.2 M: 1
F: 0
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Partition tree balance

Convexify partition trees

Benchmark Min Max Std.Dev
adi 15 19 0.19

bicg 9 13 0.17
durbin 10 12 0.24

fdtd-2d 15 20 0.20
gemm 12 17 0.27

gesummv 11 13 0.13
jacobi-2d 15 20 0.26

ludcmp 11 16 0.15
mvt 12 14 0.15

seidel-2d 12 17 0.27
syr2k 13 17 0.24
syrk 12 15 0.12

trisolv 9 11 0.25
trmm 14 17 0.22

Max-distance partition trees

Benchmark Min Max Std.Dev
adi 4 30 13.71

bicg 3 21 10.60
durbin 2 29 19.97

fdtd-2d 2 40 22.89
gemm 3 27 15.17

gesummv 4 23 11.06
jacobi-2d 2 35 18.74

ludcmp 2 42 23.71
mvt 4 27 13.56

seidel-2d 4 46 39.66
syr2k 3 23 14.05
syrk 2 23 12.58

trisolv 2 26 19.90
trmm 3 29 17.91
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