
Data Locality on Manycore Architectures

Duco van Amstel

Inria / Kalray - Grenoble, France

Ph.D defence - July 18th, 2016

Topics

Introduction

Section - Introduction 3 / 34

The Proverbial Memory Wall

Observations:

Available computational power keeps growing exponentially

Bandwidth of memory interfaces increases slower

Has been the case since the ’90s and is called the Memory-Wall

Definition
For a given executable / partial code :

Operational Intensity (OI) =
Number of instructions

Number of memory operations

Section - Introduction 4 / 34

Research topics

Working hypothesis
Local target memory of limited size communicating with distant
memory of infinite size through memory operations

Idea: Improve data reuses and reduce IO operations of
frequently executed code
→ Improve data locality of programs

Section - Introduction 5 / 34

Overview

Data locality

Compilation

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Manycore

Network-on-Chip
(Chapter 2)

Generalized tiling
(Chapter 3)

Directed graph
reachability Convex

partitioning

Register tiling
(Chapter 4)

Dataflow tiling
(Chapter 5)

Trace tiling
(Chapter 6)

Topics

1 Modeling memory usage and IO costs

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Section - Modeling memory usage and IO costs 7 / 34

Code representation

What we want:

1 a compact representation

2 data reuses and no other
dependencies

3 straightforward evaluation of memory
usage for any part of the
representation

We refer to it as the memory-use graph.

in 1

2

3
4

56

out

7out 8out

Figure: Dataflow diagram

Section - Modeling memory usage and IO costs 8 / 34

Memory-use graph construction

f o r (i n t j = 1 ; j < N − 1 ; j ++) {
/* S1 */ A [j] = (A [j −2] + A [j −1] + A [j] + A [j + 1] + A [j + 2]) / 5 ;
/* S2 */ B [j] = B [j] + A [j] * C [j] ;
/* S3 */ B [j] = B [j] − (B [j −1] − B [j]) * C [j − 1] ;

}

S1

S2

S3

S1

S3

S2

S3

A[j]

B[j]

A[j]

B[j]

C[j]

1

1

1

1

1
1

1

1

22

1

S: 4

S: 0

S: 1

S: 1

S: 4

S: 1

S: 1

C: 0

C: 1

C: 1

S: 1

C: 0

C: 1

C: 1

Section - Modeling memory usage and IO costs 8 / 34

Memory-use graph construction

f o r (i n t j = 1 ; j < N − 1 ; j ++) {
/* S1 */ A [j] = (A [j −2] + A [j −1] + A [j] + A [j + 1] + A [j + 2]) / 5 ;
/* S2 */ B [j] = B [j] + A [j] * C [j] ;
/* S3 */ B [j] = B [j] − (B [j −1] − B [j]) * C [j − 1] ;

}

We observe:

inter-iteration edges

intra-iteration edges

Some transformations need to be performed

S1

S2

S3

S1

S3

S2

S3

A[j]

B[j]

A[j]

B[j]

C[j]

1

1

1

1

1
1

1

1

22

1

S: 4

S: 0

S: 1

S: 1

S: 4

S: 1

S: 1

C: 0

C: 1

C: 1

S: 1

C: 0

C: 1

C: 1

Section - Modeling memory usage and IO costs 8 / 34

Memory-use graph construction

f o r (i n t j = 1 ; j < N − 1 ; j ++) {
/* S1 */ A [j] = (A [j −2] + A [j −1] + A [j] + A [j + 1] + A [j + 2]) / 5 ;
/* S2 */ B [j] = B [j] + A [j] * C [j] ;
/* S3 */ B [j] = B [j] − (B [j −1] − B [j]) * C [j − 1] ;

}

Steps:

1 Indicate the size of reused data on edges

2 Transform self-reuses into state data

3 Transform other inter-iteration reuses into
state and intra-iteration reuse data

4 Add internal computation requirements
to account for hidden intermediary values

S1

S2

S3

S1

S3

S2

S3

A[j]

B[j]

A[j]

B[j]

C[j]

1

1

1

1

1
1

1

1

22

1

S: 4

S: 0

S: 1

S: 1

S: 4

S: 1

S: 1

C: 0

C: 1

C: 1

S: 1

C: 0

C: 1

C: 1

Section - Modeling memory usage and IO costs 8 / 34

Memory-use graph construction

f o r (i n t j = 1 ; j < N − 1 ; j ++) {
/* S1 */ A [j] = (A [j −2] + A [j −1] + A [j] + A [j + 1] + A [j + 2]) / 5 ;
/* S2 */ B [j] = B [j] + A [j] * C [j] ;
/* S3 */ B [j] = B [j] − (B [j −1] − B [j]) * C [j − 1] ;

}

Steps:

1 Indicate the size of reused data on edges

2 Transform self-reuses into state data

3 Transform other inter-iteration reuses into
state and intra-iteration reuse data

4 Add internal computation requirements
to account for hidden intermediary values

S1

S2

S3

S1

S3

S2

S3

A[j]

B[j]

A[j]

B[j]

C[j]

1

1

1

1

1
1

1

1

22

1

S: 4

S: 0

S: 1

S: 1

S: 4

S: 1

S: 1

C: 0

C: 1

C: 1

S: 1

C: 0

C: 1

C: 1

Section - Modeling memory usage and IO costs 8 / 34

Memory-use graph construction

f o r (i n t j = 1 ; j < N − 1 ; j ++) {
/* S1 */ A [j] = (A [j −2] + A [j −1] + A [j] + A [j + 1] + A [j + 2]) / 5 ;
/* S2 */ B [j] = B [j] + A [j] * C [j] ;
/* S3 */ B [j] = B [j] − (B [j −1] − B [j]) * C [j − 1] ;

}

Steps:

1 Indicate the size of reused data on edges

2 Transform self-reuses into state data

3 Transform other inter-iteration reuses into
state and intra-iteration reuse data

4 Add internal computation requirements
to account for hidden intermediary values

S1

S2

S3

S1

S3

S2

S3

A[j]

B[j]

A[j]

B[j]

C[j]

1

1

1

1

1
1

1

1

22

1

S: 4

S: 0

S: 1

S: 1

S: 4

S: 1

S: 1

C: 0

C: 1

C: 1

S: 1

C: 0

C: 1

C: 1

Section - Modeling memory usage and IO costs 8 / 34

Memory-use graph construction

f o r (i n t j = 1 ; j < N − 1 ; j ++) {
/* S1 */ A [j] = (A [j −2] + A [j −1] + A [j] + A [j + 1] + A [j + 2]) / 5 ;
/* S2 */ B [j] = B [j] + A [j] * C [j] ;
/* S3 */ B [j] = B [j] − (B [j −1] − B [j]) * C [j − 1] ;

}

Steps:

1 Indicate the size of reused data on edges

2 Transform self-reuses into state data

3 Transform other inter-iteration reuses into
state and intra-iteration reuse data

4 Add internal computation requirements
to account for hidden intermediary values

S1

S2

S3

S1

S3

S2

S3

A[j]

B[j]

A[j]

B[j]

C[j]

1

1

1

1

1
1

1

1

22

1

S: 4

S: 0

S: 1

S: 1

S: 4

S: 1

S: 1

C: 0

C: 1

C: 1

S: 1

C: 0

C: 1

C: 1

Section - Modeling memory usage and IO costs 8 / 34

Memory-use graph construction

f o r (i n t j = 1 ; j < N − 1 ; j ++) {
/* S1 */ A [j] = (A [j −2] + A [j −1] + A [j] + A [j + 1] + A [j + 2]) / 5 ;
/* S2 */ B [j] = B [j] + A [j] * C [j] ;
/* S3 */ B [j] = B [j] − (B [j −1] − B [j]) * C [j − 1] ;

}

S2 :
mov [R15 + RSI *4 − 4] , R8D ; Save C [j −1]
mov R8D , [R15 + RSI * 4] ; Load C [j]
mov EBX , [R14 + RSI * 4] ; Load B [j]
mov EAX , [R13 + RSI * 4] ; Load A [j]
mul EAX , R8D ; Compute on RA
add EBX , EAX ; Compute on RB
mov [R14 + RSI * 4] , EBX ; Save B [j]

Registers used: 3

S1

S2

S3

S1

S3

S2

S3

A[j]

B[j]

A[j]

B[j]

C[j]

1

1

1

1

1
1

1

1

22

1

S: 4

S: 0

S: 1

S: 1

S: 4

S: 1

S: 1

C: 0

C: 1

C: 1

S: 1

C: 0

C: 1

C: 1

Section - Modeling memory usage and IO costs 9 / 34

Evaluation of memory usage

S: 2
C: 5

S: 0
C: 3

S: 4
C: 2

S: 2
C: 0

S: 0
C: 2

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

3

22

4

1

3

22

4

1

3

22

4

1

Figure: Iterated memory-use graph

Consider a partial execution:

B1 � C1 � D1 � B2 � C2 � D2 �
B3 � C3 � D3

Compute the size of data stored in
memory in and between nodes:

3, 4, 10, . . . , 10, 12, 8, . . . , 12, 4, 4

The maximum is the memory usage
of the partial execution, i.e 12

Section - Modeling memory usage and IO costs 10 / 34

IO cost computation

For an arbitrary piece of code:

memory usage ≤ memory size

↓

Internal reuses do not require IO

Divide evaluated code in such pieces

Only external reuses generate IO

IO cost equal to cut between
pieces

S1

S2

S3
S4

S5 S6

2

5

4

2

4
3 3

Memory size 7
IO cost 16

Topics

2 Generalized tiling

Data locality
Performance
debugging

Memory usage
& IO model
(Chapter 1)

Generalized tiling
(Chapter 3)

Section - Generalized tiling 12 / 34

Representing the iteration space

j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

f o r (i n t i = 1 ; i < N ; i ++)
f o r (i n t j = 1 ; j < M; j ++)

S1 : A [i , j] = B [i] + C [j] ;
S2 : A [i , j −1] = A [i , j −1] * A [i , j] ;
S3 : A [i −1 , j] = A [i −1 , j] * A [i , j] ;
S4 : A [i , j] = k * A [i , j] ;

LB (Loop-body) = {S1,S2,S3,S4}

Two new dimensions:

1 Statements / actors

2 Innermost iteration /
inputs

j

st
a

te
m

en
ts

i

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

Section - Generalized tiling 12 / 34

Representing the iteration space

j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

f o r (i n t i = 1 ; i < N ; i ++)
f o r (i n t j = 1 ; j < M; j ++)

S1 : A [i , j] = B [i] + C [j] ;
S2 : A [i , j −1] = A [i , j −1] * A [i , j] ;
S3 : A [i −1 , j] = A [i −1 , j] * A [i , j] ;
S4 : A [i , j] = k * A [i , j] ;

LB (Loop-body) = {S1,S2,S3,S4}

Two new dimensions:

1 Statements / actors

2 Innermost iteration /
inputs

j

st
a

te
m

en
ts

i

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

Section - Generalized tiling 13 / 34

Data locality optimizations

Code example:

f o r (i n t i = 1 ; i < N ; i ++)
f o r (i n t j = 1 ; j < M; j ++)

S1 : A [i , j] = B [i] + C [j] ;
S2 : A [i , j −1] = A [i , j −1] * A [i , j] ;
S3 : A [i −1 , j] = A [i −1 , j] * A [i , j] ;
S4 : A [i , j] = k * A [i , j] ;

Space representation

j

i
sta

te
m

en
ts

Section - Generalized tiling 14 / 34

A missing piece

j

i sta
te

m
en

ts

Register tiling
Loop-nest reuses

j

i sta
te

m
en

ts
(1)

(2)

Register allocation
Intra-iteration optimal reuses

j

i sta
te

m
en

ts
(1)

(2)

Scalar promotion
Intra & cross-iteration greedy reuses

j

i sta
te

m
en

ts

Generalized register tiling
Inter & intra-iteration reuses

Section - Generalized tiling 14 / 34

A missing piece

j

i sta
te

m
en

ts

Register tiling
Loop-nest reuses

j

i sta
te

m
en

ts
(1)

(2)

Register allocation
Intra-iteration optimal reuses

j

i sta
te

m
en

ts
(1)

(2)

Scalar promotion
Intra & cross-iteration greedy reuses

j

i sta
te

m
en

ts

Generalized register tiling
Inter & intra-iteration reuses

Section - Generalized tiling 15 / 34

Comparison of tiling methods

Tile regularity
classical tiling

j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

Tile semi-regularity
generalized tiling

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6 S6 S6

Schedule within a tile Ordering of tiles

Section - Generalized tiling 15 / 34

Comparison of tiling methods

Tile regularity
classical tiling

j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

Tile semi-regularity
generalized tiling

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6 S6 S6

Schedule within a tile Ordering of tiles

Section - Generalized tiling 16 / 34

Optimization problem

Defining a tiling solution means:

1 Linearization / schedule the memory-use graph

2 Choosing points in the schedule where to place tile limits

3 Specifying a width for each tile

. . . and there are multiple solutions

S1

S2 S3

S4

S5

j

st
a

te
m

en
ts

S1 S1 S1 S1

S3 S3 S3 S3

S2 S2 S2 S2

S4 S4 S4 S4

S5 S5 S5 S5

Section - Generalized tiling 16 / 34

Optimization problem

Defining a tiling solution means:

1 Linearization / schedule the memory-use graph

2 Choosing points in the schedule where to place tile limits

3 Specifying a width for each tile

. . . and there are multiple solutions

S1

S2 S3

S4

S5

j

st
a

te
m

en
ts

S1 S1 S1 S1

S3 S3 S3 S3

S2 S2 S2 S2

S4 S4 S4 S4

S5 S5 S5 S5

Section - Generalized tiling 16 / 34

Optimization problem

Defining a tiling solution means:

1 Linearization / schedule the memory-use graph

2 Choosing points in the schedule where to place tile limits

3 Specifying a width for each tile

. . . and there are multiple solutions

S1

S2 S3

S4

S5

j

st
a

te
m

en
ts

S1 S1 S1 S1

S3 S3 S3 S3

S2 S2 S2 S2

S4 S4 S4 S4

S5 S5 S5 S5

Section - Generalized tiling 16 / 34

Optimization problem

Defining a tiling solution means:

1 Linearization / schedule the memory-use graph

2 Choosing points in the schedule where to place tile limits

3 Specifying a width for each tile

. . . and there are multiple solutions

S1

S2 S3

S4

S5

j

st
a

te
m

en
ts

S1 S1 S1 S1

S3 S3 S3 S3

S2 S2 S2 S2

S4 S4 S4 S4

S5 S5 S5 S5

Section - Generalized tiling 17 / 34

Heavy-edge scheduling

Objective Reducing the reach of reuses

S1

S2

S3

S4

S5

S1

S2

S4

S3

S5

S1

S3

S2

S4

S5

S1

S3

S5

S2

S4

Edges ordered by descending weight: green, red, orange, blue, brown

Blue zones have been frozen

Section - Generalized tiling 17 / 34

Heavy-edge scheduling

Objective Reducing the reach of reuses

S1

S2

S3

S4

S5

S1

S2

S4

S3

S5

S1

S3

S2

S4

S5

S1

S3

S5

S2

S4

Edges ordered by descending weight: green, red, orange, blue, brown
Blue zones have been frozen

Section - Generalized tiling 17 / 34

Heavy-edge scheduling

Objective Reducing the reach of reuses

S1

S2

S3

S4

S5

S1

S2

S4

S3

S5

S1

S3

S2

S4

S5

S1

S3

S5

S2

S4

Edges ordered by descending weight: green, red, orange, blue, brown
Blue zones have been frozen

Section - Generalized tiling 17 / 34

Heavy-edge scheduling

Objective Reducing the reach of reuses

S1

S2

S3

S4

S5

S1

S2

S4

S3

S5

S1

S3

S2

S4

S5

S1

S3

S5

S2

S4

Edges ordered by descending weight: green, red, orange, blue, brown
Blue zones have been frozen

Section - Generalized tiling 18 / 34

Heuristical solver methods

Heavy-edge / Greedy
Perform heavy-edge scheduling and
greedily compute locally optimal tiles

Tile-aware / Heavy-edge
Contract edges one-by-one and create
or expand tiles to include them; Roll
back contraction if not possible

Tile-aware / Conservative
Contract edges one-by-one and create
tiles to include them; Roll back
contraction if not possible

Memory-use graph

Schedule

Tile

Tiling solution

DirectUndo

Section - Generalized tiling 18 / 34

Heuristical solver methods

Heavy-edge / Greedy
Perform heavy-edge scheduling and
greedily compute locally optimal tiles

Tile-aware / Heavy-edge
Contract edges one-by-one and create
or expand tiles to include them; Roll
back contraction if not possible

Tile-aware / Conservative
Contract edges one-by-one and create
tiles to include them; Roll back
contraction if not possible

Memory-use graph

Schedule

Tile

Tiling solution

DirectUndo

Section - Generalized tiling 18 / 34

Heuristical solver methods

Heavy-edge / Greedy
Perform heavy-edge scheduling and
greedily compute locally optimal tiles

Tile-aware / Heavy-edge
Contract edges one-by-one and create
or expand tiles to include them; Roll
back contraction if not possible

Tile-aware / Conservative
Contract edges one-by-one and create
tiles to include them; Roll back
contraction if not possible

Memory-use graph

Schedule

Tile

Tiling solution

DirectUndo

Section - Generalized tiling 18 / 34

Heuristical solver methods

Heavy-edge / Greedy
Perform heavy-edge scheduling and
greedily compute locally optimal tiles

Tile-aware / Heavy-edge
Contract edges one-by-one and create
or expand tiles to include them; Roll
back contraction if not possible

Tile-aware / Conservative
Contract edges one-by-one and create
tiles to include them; Roll back
contraction if not possible

Memory-use graph

Schedule

Tile

Tiling solution

DirectUndo

Section - Generalized tiling 18 / 34

Heuristical solver methods

Heavy-edge / Greedy
Perform heavy-edge scheduling and
greedily compute locally optimal tiles

Tile-aware / Heavy-edge
Contract edges one-by-one and create
or expand tiles to include them; Roll
back contraction if not possible

Tile-aware / Conservative
Contract edges one-by-one and create
tiles to include them; Roll back
contraction if not possible

Memory-use graph

Schedule

Tile

Tiling solution

DirectUndo

Topics

3 Applications in loop and dataflow optimization

Data locality

Compilation

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Manycore

Generalized tiling
(Chapter 3)

Register tiling
(Chapter 4)

Dataflow tiling
(Chapter 5)

Section - Applications in loop and dataflow optimization 20 / 34

Generalized register tiling

Code generation

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.

Section - Applications in loop and dataflow optimization 20 / 34

Generalized register tiling

Code generation

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.

Section - Applications in loop and dataflow optimization 20 / 34

Generalized register tiling

Code generation

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.

Section - Applications in loop and dataflow optimization 20 / 34

Generalized register tiling

Code generation

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.

Section - Applications in loop and dataflow optimization 20 / 34

Generalized register tiling

Code generation

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.

Section - Applications in loop and dataflow optimization 20 / 34

Generalized register tiling

Code generation

j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S2 S2 S2 S2 S2

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Target tiling:

Schedule S1, S3, S2, S4, S5

Tile 1 {S1, S3} - width 3

Tile 2 {S2, S4, S5} - width 2

Transformations to be applied:

1 Rescheduling

2 Loop fission

3 Loop unrolling

4 Rescheduling

Prototyping in the Open64 compiler suggests the impact of generalized
tiling on load/store operations could be significant.

Section - Applications in loop and dataflow optimization 21 / 34

Implementation

LLVM

General
optimizations

(-O3, etc.)

Unroll
loops

Memory-use graph
construction

Apply
tiling

Register
promotion
(-mem2reg)

Tiling solver

file.ll file.ll

Tiling driver

Existing passes Custom passes External tool

∼ 7k lines ∼ 2.5k lines

Section - Applications in loop and dataflow optimization 22 / 34

Generalized dataflow tiling

Target
Static & cyclo-static dataflow languages

Prototyping was done in StreamIt:

Usage of preprocessed StreamIt benchmarks

Rescheduling of actors & execution scaling

Simulation of cache-behaviour / evaluation of cache-misses

Benchmark
StreamIt
toolchain

Memory-use

Tiling solver

Cache
simulator

schedule

Section - Applications in loop and dataflow optimization 23 / 34

Prototype results

Se
rp

en
t

TD
E

FM
Rad

io

Fil
te

rB
an

k
DES

DCT

M
PE

G2

Cha
nn

elV
oc

od
er

Bit
on

icS
or

t

Be
am

Fo
rm

er
0.1

0.5

1

1.5

2

N
o

rm
al

iz
ed

ca
ch

e-
m

is
se

s

Sermulins et al. Constraint Programming Greedy TA Heavy-Edge TA Conservative

Topics

4 Performance debugging with convex graph partitioning

Data locality

Compilation

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Manycore

Generalized tiling
(Chapter 3)

Convex
partitioning

Register tiling
(Chapter 4)

Dataflow tiling
(Chapter 5)

Trace tiling
(Chapter 6)

Section - Performance debugging with convex graph partitioning 25 / 34

Overview

Performance debugging
Analysis of the execution of code in order to identify performance
bottle-necks

Source code

Instrumentation
(DDG)

Executable

Trace graph

Performance
debugger

Optimization
hints

Section - Performance debugging with convex graph partitioning 26 / 34

Convex partitioning

S1

S2

S3
S4

S5 S6

2

5

4

2

4
3 3

. . . is a convex partitioning

Non-convex

1 2 3 4

Partition A

Partition B

Offending path: 1 (A) � 2 (B) � 3 (A)

Convex

1 2 3 4

Partition A

Partition B

Section - Performance debugging with convex graph partitioning 27 / 34

Partition schemes

k-way partition scheme

A B C D E F G

1 2 3

Hierarchical partition scheme

A B C D E F G

root

1 2

1.1 1.2 2.1 2.2 2.3

1.1.1 1.1.2 1.2.1 1.2.2

Section - Performance debugging with convex graph partitioning 28 / 34

Max-distance criterion

Idea: For each vertex compute longest
path originating at a source and
terminating at a sink

1 Source path ≤ Sink path
� source partition

2 Source path > Sink path
� sink partition

1

2 3

4

5

6 7

8

9

0

1 0

2

3

4 3

5

6

6

5 5

4

3

2 2

1

0

Section - Performance debugging with convex graph partitioning 28 / 34

Max-distance criterion

Idea: For each vertex compute longest
path originating at a source and
terminating at a sink

1 Source path ≤ Sink path
� source partition

2 Source path > Sink path
� sink partition

1

2 3

4

5

6 7

8

9

0

1 0

2

3

4 3

5

6

6

5 5

4

3

2 2

1

0

Section - Performance debugging with convex graph partitioning 29 / 34

Experimental results

128 256 512 1,024

20

40

·103 3mm

128 256 512 1,024
0

0.5

1
·103

bicg

128 256 512 1,024

2

4

6

·103
ludcmp

128 256 512 1,024
0

1

2

3

4
·103

syrk

C
o

m
m

un
ic

at
io

n
co

st
s

(c
ac

he
-m

is
se

s)

Target cache size (32-bit words)

Naznin et al. Convexify Max-Distance

Topics

Conclusion & perspectives

Section - Conclusion & perspectives 31 / 34

Overview

Data locality

Compilation

Performance
debugging

Memory usage
& IO model
(Chapter 1)

Manycore

Network-on-Chip
(Chapter 2)

Generalized tiling
(Chapter 3)

Directed graph
reachability Convex

partitioning

Register tiling
(Chapter 4)

Dataflow tiling
(Chapter 5)

Trace tiling
(Chapter 6)

Section - Conclusion & perspectives 32 / 34

Contributions

Operational intensity
Model to compute a close approximation of its value for arbitrary code

Generalized tiling
Formalization of an optimization problem and proposal of several
heuristics to compute solutions

GraphUtilities library
Multi-threaded library for directed graph manipulation:
state-of-the-art reachability queries, convex partitioning & associated
metrics (∼ 5k lines)

Section - Conclusion & perspectives 33 / 34

Future work

Stabilize / rewrite LLVM implementation of generalized tiling

Pursue implementation of dataflow tiling

Expand generalized tiling formalization for more flexibility

Consider parallel execution of tiles

Continue improving hierarachical partition schemes

. . .

Section - Conclusion & perspectives 34 / 34

Section - Conclusion & perspectives 35 / 34

Backup slides

Section - Conclusion & perspectives 36 / 34

Generalized tiling in the polyhedral model?

Polyhedral model
j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

Memory-use graph
j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Theoretically possible but... more false reuse edges then true ones.
Very constrained optimization opportunities.

Section - Conclusion & perspectives 36 / 34

Generalized tiling in the polyhedral model?

Polyhedral model
j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

Memory-use graph
j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Need to create uniform reuse pattern for whole iteration space.
→ Duplicate all existing reuse edges for each point in iteration space?

Theoretically possible but... more false reuse edges then true ones.
Very constrained optimization opportunities.

Section - Conclusion & perspectives 36 / 34

Generalized tiling in the polyhedral model?

Polyhedral model
j

i

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

LB LB LB LB LB

Memory-use graph
j

st
a

te
m

en
ts

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3 S3 S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

Theoretically possible but... more false reuse edges then true ones.
Very constrained optimization opportunities.

Section - Conclusion & perspectives 37 / 34

The influence of scheduling

S: 2
C: 5

S: 0
C: 3

S: 4
C2:

S: 2
C: 0

S: 0
C: 2

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

3

22

4

1

3

22

4

1

3

22

4

1

Figure: Iterated memory-use graph

What if we consider another
schedule?

B1 � B2 � B3 � C1 � C2 � C3 �
D1 � B3 � D3

Amount of data stored in and
between nodes changes. . .

7, 4, 11, . . . , 16, 14, 16, . . . , 6, 4, 4

. . . and so does the resulting
memory usage: 16

Section - Conclusion & perspectives 38 / 34

Transition to Σ-C

Context
Dataflow languages on a manycore processor

Illustration with the MPPA processor family by Kalray:

256 computational cores, 32 management cores

16 computation clusters of 17 cores each

4 IO clusters of 4 cores each

Clusters each have own local memory

Clusters linked through a Network-on-Chip

Distributed architecture
→ Dataflow programs must be mapped to ressources

Section - Conclusion & perspectives 39 / 34

Communications over the Network-on-Chip

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

IO IO IO IO

IO

IO

IO

IO

IO IO IO IO

IO

IO

IO

IO

Contributions:

Network traffic model

Redesign of bandwidth
limiter (patent filed)

NoC simulator
(∼ 1.5k lines)

Remaining challenges:

Map actors to clusters
with size constraints

Combine memory and
network models

Section - Conclusion & perspectives 40 / 34

Reachability querying

Goal
For a directed-acyclic graph and two of its vertices decide whether
there exists a path from one to the other.

Existing approaches:

Naïve depth-first search (prohibitive for many queries)

Compute full transitive-closure (prohibitive for large graphs)

Pre-compute information reducing search time (many variants)

Contribution

1 Pre-indexation method based on reverse post-order traversals

2 Experimental results improving on state-of-the-art methods

Drawback: Index is very hard to maintain during graph partitioning

Section - Conclusion & perspectives 40 / 34

Reachability querying

Goal
For a directed-acyclic graph and two of its vertices decide whether
there exists a path from one to the other.

Existing approaches:

Naïve depth-first search (prohibitive for many queries)

Compute full transitive-closure (prohibitive for large graphs)

Pre-compute information reducing search time (many variants)

Contribution

1 Pre-indexation method based on reverse post-order traversals

2 Experimental results improving on state-of-the-art methods

Drawback: Index is very hard to maintain during graph partitioning

Section - Conclusion & perspectives 40 / 34

Reachability querying

Goal
For a directed-acyclic graph and two of its vertices decide whether
there exists a path from one to the other.

Existing approaches:

Naïve depth-first search (prohibitive for many queries)

Compute full transitive-closure (prohibitive for large graphs)

Pre-compute information reducing search time (many variants)

Contribution

1 Pre-indexation method based on reverse post-order traversals

2 Experimental results improving on state-of-the-art methods

Drawback: Index is very hard to maintain during graph partitioning

Section - Conclusion & perspectives 41 / 34

Memory usage & IO cost

k-way partition scheme - Hypergraph cut, like tiling

Hierarchical partition scheme - FrontierLive = hypergraph cut

MemoryUse = max

(
max

children
(MemoryUse) , FrontierLive

)
M: MemoryUse F: FrontierLive

A B C D E F G

root

M: 2
F: 1

1

M: 2
F: 2 2

M: 1
F: 0

1.1

M: 1
F: 0 1.2

M: 1
F: 1 2.1

M: 1
F: 0 2.2M: 1

F: 0

2.3M: 1
F: 0

1.1.1 M: 1
F: 0

1.1.2 M: 1
F: 0

1.2.1 M: 1
F: 0

1.2.2 M: 1
F: 0

Section - Conclusion & perspectives 42 / 34

Partition tree balance

Convexify partition trees

Benchmark Min Max Std.Dev
adi 15 19 0.19

bicg 9 13 0.17
durbin 10 12 0.24

fdtd-2d 15 20 0.20
gemm 12 17 0.27

gesummv 11 13 0.13
jacobi-2d 15 20 0.26

ludcmp 11 16 0.15
mvt 12 14 0.15

seidel-2d 12 17 0.27
syr2k 13 17 0.24
syrk 12 15 0.12

trisolv 9 11 0.25
trmm 14 17 0.22

Max-distance partition trees

Benchmark Min Max Std.Dev
adi 4 30 13.71

bicg 3 21 10.60
durbin 2 29 19.97

fdtd-2d 2 40 22.89
gemm 3 27 15.17

gesummv 4 23 11.06
jacobi-2d 2 35 18.74

ludcmp 2 42 23.71
mvt 4 27 13.56

seidel-2d 4 46 39.66
syr2k 3 23 14.05
syrk 2 23 12.58

trisolv 2 26 19.90
trmm 3 29 17.91

	Modeling memory usage and IO costs
	Generalized tiling
	Applications in loop and dataflow optimization
	Performance debugging with convex graph partitioning

